Kevin Song

kevs@cmu.edu (256) 429-8413

Education: Carnegie Mellon University (Pittsburgh, PA)		Years Aug 2020 -
•	Expected Graduation: May 2024 (GPA: 3.89/4.00, S22 Dean's List)	
Work	Experience	Date
CMU Biorobotics Lab: Undergraduate Research Assistant		Dec 2021
•	Designed an LED-driver PCB, a GNSS/IMU PCB, a USB Hub PCB (WIP), and a	Present
	USB-to-RS485 communication PCB in Altium. Learned PCB-layout guidelines,	
	circuit-protection measures, and noise-reduction techniques.	
•	Created gcode test scripts and Python parser scripts for a five-axis 3D printing arm.	
•	Configured Marlin firmware for a MKS Gen L V1.0 3D printer control board.	
•	Created CAD models for filament holder and part cooling fan in Solidworks.	
Radiance Technologies: Reverse Engineering Intern		May 2021
•	Improved efficiency of Intel PT-based tool by automating portions of intermediate	Aug 2021
	file/output generation and removing unused QEMU features.	
•	Created and modified tests for tracing tools using C and Python.	
•	Added Java-based features to DragonDance (a reverse engineering software plugin).	
Projects & Activities:		Date
Build1	8 Project: Pancake Printer	Jan 2022 -
•	Used Arduino Uno + CNC electronics to create a pancake-printing rig.	Feb 2022
•	Wrote Python script to format gcode and send it line-by-line to the Arduino board.	
CMU F	Robotics Club: Club Architect (Mar '21 - Apr '22), Gen. Officer (Apr '22 - Present)	Sep 2020 -
•	Organized physical club space and assembled/set up Prusa MK3S+ 3D printers.	Present
•	Helped plan and run the annual Red Robot Hackathon. Fixed 3D printers, printed	
	game pieces, supervised/assisted ~50 participants.	
RISC240 Lab (18-240 Project):		Apr 2022
•	Coded implementation of a multiplication coprocessor for RISC240, an example	
	microarchitecture. Demonstrated knowledge of FSM + datapath design. Design was	
	simulated using VCS and synthesized to an DE2-115 FPGA board.	
Mallo	:-Lab (18-213 Project):	Nov 2021
•	Coded implementation of the malloc, dealloc, and realloc commands in C.	
	Demonstrated techniques such as seglists, footer removal, and mini-blocks.	

Relevant Coursework:

- Intro to Computer Systems (18-213)
- Struc. & Design of Digital Systems (18-240)
- Introduction to Machine Learning (10-301)
- *Embedded Systems (18-349)
- *Logic Design and Verification (18-341)
- *Devices & Analog Circuits (18-220)

Relevant Skills:

- Coding: C, Python, Java, SystemVerilog
- Experienced with Altium Designer
- Familiar Tools and Skills: Solidworks, Linux cmd line usage, Git, VCS, Quartus, soldering.
- Proficient with Microsoft Office Tools